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ERRATA

"ON THE INTERACTION OF A TWO-DIMENSIONAL JET
WITH A PARALLEL FLOW"
by
Robert C. Ackerberg and Alexander Pal

(PIBAL Report No. 889, September 1965)

Page 4, Eq. (2.1) should read: an/an = qI/R'l .

Eq. (2.5) should read: a(s)=tq_, +In (R(s) - d(s) ].

Page 5, 13 lines down: "stramline" should be changed to "streamline",
Page 6, 3 lines down: Equation number (2.12) should be changed to (2. 11).
Page 7, 8 lines down: Equation number (2,13) should be changed to (2.12).
Page 8, Eq. (3.12): Superscript hats () should be inserted over wand ¥,
Page 12, 4 lines down should read: "late here, in a slightly....."

10 lines down should read: "bounded and vQ¥* (¢, ¥) =o(l/r)...."
Page 13, 2 lines up should read: ".... values, and Q is",
Page 14, line 6 should read:

D)‘[u,v]z‘g‘g Y Vv dedy
€ Gx

€
Page 14, Eq. (5.2) should read:

2 R s SS Tu9vdpdy
e A
€

+1/(2n€21ne)5 u|dw|S v |dw |
CC CG
Page 15, Footnote, line 2 should read:

) -c ©
P S u(p) dp= lim [g + S u{p) d o
-00 e~ 0 -00 e

Page 16, 3 lines up should read: "....VAR, using (5. 6) as the,.,.".
Page 17, 1 line down should read: ".... to the absence of any .,..".
Page 21, Eq. (6.5')should read:

~ n/2
b{lul=D[u J+2(a/m) f u (1, 2t) dt
0

Page 22, Eq. (6.8) should read:

n/2
2 [uls= S u (1, 2t) [uop(l, 2t) + 2a/mnldt

0
Page 36, 2 lines down should read: ".... numerically using the"
Page 38, 2 lines up should read: ",... property (c) it follows...."
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ON THE INTERACTION OF A TWO-DIMENSIONAL JET

WITH A PARALLEL FLOW'
by

Robert C. Ackerberg* and Alexander Pal**

Polytechnic Institute of Brooklyn

SUMMARY

The injection of a two-dimensional jet of total head Hi from an infinite
plate into a uniform stream of lower total head H, is considered, the fluids being
assumed inviscid and incompressible. Steady, irrotational solutions of Euler’s
equations are found for H)/H, ?’ac. The regi.on behind the jet is treated as a
stagnant wake with constant pressure equal to that of the undisturbed stream, and
the jetinjection angle is fixed across the jet opening.

When a thin jet approximation is combined with Bernoulli ‘s principle, a
non-linear boundary condition is derived along the vortex sheet separating the jet
from the external flow. The resulting non-linear potential problem (in the plane
of the complex velocity potential) for the external flow is shown by Pal to be
equivalent to a variational problem. A numerical procedure based on the varia-
tional principle and the Ritz-Galerkin method is used to solve for the case of
normal injection with a digital computer. The pressure distribution along the

plate upstream and streamline diagrams are given. (
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1., INTRODUCTION

This investigation is concerned with the injection of a jet of total head H, from
an infinite plate into a uniform stream of lower total head H, (see Fig. la)., Two-
dimensional, steady, irrotational solutions of Euler's equations will be sought, the fluids
being assumed inviscid and incompressible. The injection angle -a is fixed across the
jet opening, and at large distances from the origin all moticn is assumed to be directed
in the positive x-direction. The region to leeward of the jet will be treated a a stag-
nant wake with constant pressure equal to that of the undisturbed stream.

Flows of this type occur frequently in connection with VTOL aircraft, ground
effect machines and jet-flapped wings. The basic difficulty in their analytical study
is the non-linear boundary condition which must be applied along a streamline sepa-
rating regions of different total heads. To ensure the continuity of the static pressure
a vortex sheet coincident with this streamline must be introduced. The extensive
literature dealing with this subject assumes one or more of the following: 1) H, = H,
2) the jet is bounded by free streamlines and walls and there is essentially no inter-
action with the external flow, and 3) the jet injection angle is small and linearized
flow is assumed.

Previous work using this model for 90° injection has been carried out by
Taylorl, Ting, Libby and Rugerz, and Vizel and Mostinskii3. Taylor uses a rough
theoretical analysis to determine the shape of the bounding streamline OC near the jet
exit and points out the difficulty of verifying any results experimentally because the jet
will fill a wedge of nearly 40° due to viscous spreading. Ting et al. considers the

problem when H, is slightly larger than H, and uses ordinary perturbation techniques
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to correct the solution obtained for equal total heads. They noted the difficulty of a
straightforward perturbation procedure due to a non-uniformity in the flow deflection
angle along the streamline OC [near the jet exit] when (H, - H;) = 0. Vizel and
Mostinskii treat the problem semi-empirically by introducing a coefficient of bending
which is equivalent to specifying an average radius of curvature over the length of the
jet. They compare their results with experimental data obtained in one of their refer-
ences.

The fundamental assumption of this analysis will be that the ratio of jet thickness
d to its radius of curvature R will be small. Physically this is to be expected when
H,/H; = oo, Using t.i'xe simplified flow of Fig. 1, it is then possible to take the basic
non-linearity of the problem into account.

This report is presented in three parts. In PartI (by R.C. Ackerberg and
A. Pal) a non-linear boundary condition is derived for the external flow based on the
assumption that d/R < <1 inside the jet (32). Since the jet shape is unknown, the
analysis is similar to potential flows with free strcamlines and is readily carried out
in the plane of the complex velocity potential, In §3, a non-linear potential problem is
derived in this plane for the logarithm of the speed along any streamline in the external
flow, Formal asymptotic solutions of the potential problem have been found in §$4 which
are valid close to and far from the jet exit.

In Part II (by A. Pal), the equivalence of the boundary value problem with a

t We have not been able to locate a copy of this reference.

. Motivated by this study Ackerberg4 has started with the assumption H, /H, - o
instead of d/R < < 1. The two assum.ptions are shown to be equivalent to first
order for all streamlines not too close to the jet exit. See the footnote ¢n p. 5,
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- variational principle is discussed in 5. In “6, a numerical method of minimizing
the variational integral based on the Ritz-Galerkin method is given. The resulting
system of non-linear equations is solved numerically for 90° injection in § 7 using
Newton's method.

In Part III (by R.C. Ackerberg and A. Pal), the numerical results are compared
with experimental and theoretical results of other workers,

Most results obtained in this analysis would be altered significantly by viscous
effects arising from the shear layers along OC and AB. In addition, this flow is
notoriously unstable and the assumption of steady flow could probably not be maintainesd
in an experiment, Nevertheless, it is expected that inviscid results will be valid close

to the jet exit where a determination of the forces on the plate can be made.

2. THE THIN JET APPROXIMATION

Introduce the complex space coordinate z = x + iy with origin at point O
(see Fig., la). Since the locations of the streamlines OC and AB are not known in
advance, it is convenient to formulate this problem using a coordinate system based on
the streamlines and equipotential lines. Define the complex velocity potential w = ¢ + i¥,
with § = 0, and ¥ = m > 0 along OC and AB respectively, and ¥ < 0 in the external flow.
The vortex sheet along OC requires that two velocity potentials be used, and conditions
in the jet and the external flow will be denoted by the subscripts | and 2, respectively. t
The flow region in the z-plane maps into the w-plane as shown in Fig. 2.

Choose a curvilincar coordinate system (s, n) in the jet as follows (see Fig. 1lb):

TSince ¥ is continuous across the strecamline OC, it need not be subscripted.
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The n-coordinate of a point P in the jet will be the distance PQ measured along the
¢ = const, line through P, and the s-coordinate will be the arc-length OQ along the

bounding streamline OC. The condition of irrotationality requires

K TR T (2.1)

R
tr 1

where R, is the radius of curvature of the streamline through (s,n). Whend/R, << 1,

we may with good approximation assume

PI(S,")"R(S)-\'I s (2.2)

where R(s) is the radius of curvature of the streamline OC. Physically this means that
the streamlines in the jet crossing an equipotential line are approximated by concentric

circles. Substituting (2.2) into (2.1) and integrating yields

tn lﬁl(‘-‘)”)f- CV1[R(5)‘ n]rals), £

where a(s) is an arbitrary function, Along the free streamline AB we require

‘-{..("’, n )= ‘Z.,\' | for no=( (=) . (2. 4)

Substituting (2. 4) in (2. 3) we obtain

Q(s)= én L{ML t+ fu[_R(w) x{(.w] (2.5)
Therefore,
. {\(“))—({(S) ,
. . = e e T 2.6
e T T o



thus, at any fixed value of s the velocity distribution is that of a potential vortex. u
The conservation of mass in the jet requires that a fixed volumetric flow rate

cross every section s = constant, i.e.,

dis)
j %L(f*,n)dﬂ'—' %wldoo) 2.7)

C

where doo = d(oo) is the uniform jet thickness far downstream, Substituting (2. 6) in

(2. 7) and integrating yields

-[R(s)-u((s)_] In HE ', d(b) ((S)Ll_ d—(i)*']‘doo» (2.8)

i.e.,

dis)=d ['fo %)J A d. (2.9)

Thus, the thickness of the jet is constant to first order.
Across the streamline OC the pressure must be continuous. Using Bernoulli's

principle this requires

(2. 10)

A2 A2
6. ~9:9. = 2(H,-H,)
where the ~ denotes the velocities at some point along the bounding stramline

OC(e.g., q; =q,(s,0)]. Here H, , are the total heads in the jet and the external flow,

respectively., When (2.10) is applied at an infinite distance downstream, a relationship

[ When a # n/2, Ackerberg4 has shown that this approximation is in error by O(d/R)

near the jet exit [Izl = O(d)] as a result of neglecting a boundary condition along OA.
The thin jet approximation is valid in the region | z| = O(d/u), where

M= Paqg? /plq2 1 0. Nevertheless, the motion in the external flow (i. e., the
solution of Eqs. (3.13)-(3.17)) will be determined correctly to o(l) up to the jet exit

because the inaccuracy of (2. 6) modifies the boundary condition along OC only to a
small order.

e e == : B S5 RTINSl o o .



between the basic parameters is obtained. Introducing the small dimensionless

= 2 2 3
parameter . (paqoop,/plqom) we obtain

Hi-H
T =l-p @.12)
2'. 91 L‘)oi
Substituting (2. 6) with n = 0 into (2.10) and neglecting terms of O[(d/R)?] yields
A
2 g .
( 0% > 2 (2.12)

%v-ol_ = 1‘_ ‘MR(‘S)

This is a boundary condition along OC for the external flow which relates the speed and

curvature along this streamline.

3. THE FLOW IN THE EXTERNAL STREAM*

In the external flow introduce the complex velccity potential
\V (Z):(_f’f ttt,' ) (3.1)

where ¥ <0, -0 €9 <. The complex velocity is

dw w-Cy e - (3. 2)
— = Uu-l(v=Qe ]
dz %

The boundary value problem for the external flow is most readily formulated in the

w - plane. Introduce the logarithm of the complex velocity

M(w)- W( .énz cfi—\;-)= Glg, ¢ )-cClg, ¢) . (3. 3)

Here Q and § are conjugate harmonic functions related by the Cauchy-Riemann

U Hereafter the subscript 2 which identifies quantities in the external flow will be
omitted whenever possible,



equations
2Q 16
..\_A.Sl\.-.- - - ’('_G_-' Y (3. 43.)
¢ <y
2Q oG
= { = - /! (3. 4b)
oy ('({
and defined in the region | <0, -0 < ® < oo.
The curvature of any streamline is given by
e ‘ & I
D A N0
R(gy) «° JEL A <y

where we have used (3. 4b) and the relation q = q eQ. Applying (3.5) to the bounding

bed

streamline OC and substituting in (2. 13) yields [note q, = qmaeQ(cp' 0)]
2Q (¢, ) 2d G(y, )@
‘f = / - h_gf.% € (’/ a "’, ) (3. 6)
fa v=0

Solving for 3Q/dy we obtain

e -
¥ 7=0 Zd %:c)
ol S Y e
Si .t(' e f
Along the wall DO the deflection is fixed. Thus,
Q(y,0)=0 alemy ¢-C,¢<0, (3. 8)
This may be written in terms of Q using (3. 4b), i.e.,
Ay ; _
:5__‘; =( a(tmg t =C, <0, (3. 9)

At infinity the flow must be uniform and undeflected. Therefore,



9(<F,‘f’,)“>0, Q(i%tp')“’C’} s [wl =00 . (3.10)

Eqs. (3.7)-(3.10) are satisfied by the function I'(w) = 0, corresponding to a uniform
stream and for which the flow does not turn through an angle -a near point O, To

satisfy this condition ' must have a logarithmic singularity at = = 0 (i.e., w = 0)

corresponding to a stagnation point flow in a corner. Thus

P(W): % En ('e""w)+- N*w) | B

%
where 0 > argw > -n, and I’ (w) is bounded at w = 0.

On introducing the non-dimensional, scaled complex velocity potential

‘:/.. o 8 Foo2 W
" priy=- Y
S)l%ool dd

in Eqs. (3.7)-(3.11), the following non-linear potential problem is obtained for Q.:

(3.12)

¥

\V-ZQ:() {:L‘l ’:‘< (';—"0<$<'>O ) (3.13)
AR A .
59 7C forye0, <0, (3.13)

)
(o8

.

:—-SL'V\LlQ FOT (;’-C)}‘,g>o
7

a » (3.15)
with
(’\\( 7 A/ _ X s,
<L{’¥) 7 tnlw (3.16)
bounded at o = & = 0, and
N oAl A
Q(tp,y/)—’o {or W | — oo | (3.17)
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4. ASYMPTOTIC EXPANSIONS OF T'(w)

Formal asymptotic expansions of I'(w) which are analytic and which satisfy
the boundary conditions term by term without inconsistency, were constructed for
~ ~ n. ~
w=0, and w™ oo, Denoting e 1w= W, we obtain for W = 0,

{2'(- W)~ % n WFE Z o(m"(&nw)wnv-m(a/rri (%.1)

Nn=0 Mm=-h
where dmn isin general a polynomial in £nW with real coefficients. Coefficients have
been obtained recursively up to n = 2 with no inconsistencies provided a single
logarithmic term W2 4nW is introduced. The coefficients which multiply integral
powers of W are indeterminate by this formal procedure.

If a = n/2, the following simpler expression is obtained:

A ‘ 0 1.3
F-W)~ L aW+ 2 a, W , (4.2)

n=y
_ao
where a5 and a, are undetermined and a, = -e . From the numerical computations
in Part Il for a = /2, a5 = 0.0450..., a, =-0.955,.., and a, = -1.658... Note
-a
that the relationship a; = -e is satisfied with good approximation.

In the case W — oo, the form of the formal asymptotic expansion does not

depend on a. We find
oo

ﬁ(’W)’V 2 &\W’) W -("”/l)J (4. 3)

n-Q



where Pn(L) denotes a polynomial (which seems to be of order n) with real coef-
ficients. From the first few terms it appears that the Pn's can be obtained recur-

sively with the exception of their constant terms. Thus,

A - -3/2

i A/ = A /

’ ( W)‘\/ AO\N "' ( l,T Ac ‘('U\. \\ fA')W 0 (4'4)
Numerical computations for a = /2 yield A j= -0.797...

The equations of the streamlines may be found by integrating (3. 3), i.e.,

A

w

Lze [ty (4.9
¢ :

0
Puttingw = >0 in (4.2) and (4.4) and substituting these results in (4. 5), we obtain
the asymptotic behavior of the streamline OC close to and far from the jet exit. These
results are readily expressed in terms of the nondimensional, scaled complex space

coordinate
NV [
'-/; = x"f Lt I 7 o L, (4.6)

where z denotes the complex coordinate of a point on OC. For |z| = 0 in the special

case a =1/2,

Although these expansions are derived in a purely formal manner, theoretical
results of Pal® suggest that they are indeed asymptotic to ['{w). It is proved
there that Q is asymptotic to the leading terms of the expansions, and formulas
are obtained expressing doo and Ap with integrals involving the boundary values
of Q. Note that Q(u, 0) = O(v~2/?) for p =~ +oo whereas I'(w) = O(|w|’1/2) for
|w| - oo in agreement with the formal asymptotic expression (4. 4).

10
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’ (4. 7)
and for |z| - oo,
2\ 4 T A2 2
Y‘*‘E o_ | 2 Y*TA°_ e
o

Using only the first term of (4. 7), and the first term of (4. 8) with an experimentally
determined constant added, these asymptotic formulae are plotted along with the

numerical result for a = 7/2 in Fig. 3. The asymptotic curves fare in well with the

numerical result,

11
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PART II

by

Alexander Pal*

2

i
i

E
Y The author is indebted to Dr., R,C. Ackerberg for his cooperation in the
‘ research project out of which this section grew., Frequent discussions with
v him of details of this work and his careful review of this section are con-

sidered especially helpful. He also helped by programming some of the
subroutines used in the numerical work.




5. VARIATIONAL PRINCIPLE

In Part I of this paper it was shown that the fluid flow problem of the interaction
of a fast jet with a potential flow, which is a parallel flow at large distance from the
orifice can be reduced to the solution of a plane boundary value problem which we formu-

late there, in a slightly different way, using reflection on the ®-axis.

Let G denote the whole (¥, ¥) plane, slit along the -9 -axis. Then a function

Q(p, ¥) has to be found which satisfies the following conditions:

Conditions in G

(a) Q(wp, §) is harmonic in G and symmetric to the real axis.
*
(b) The function Q (v,¥) = Q(v,¥)-(a/m)in r (r= (9% +y? )%) is
*
bounded and VQ (¥,V) = o(r) uniformly as r — 0.

(c) Qp,¥) -0, vQ(®, ¥)=o(l/r)uniformly, as r —~ oo.

Boundary Conditions

(d) Q and Q are continuous on the +¢ -axis. Here n is the outer

3n
normal to the domain G on V=0, i.e., %% = aa—% on the lower side and =- %QW on the
upper side of the cut.
(e)aa—?]=-sinhQ on V=0, >0, (5.1)

() QU9 0) = 0w ™2?) as m-+o.

5
Conditions (b), (c), and (f) are more stringent than necessary. It was shown

that the problem has a unique solution under much milder conditions (see also footnote

on page 16). However, since this solution satisfies the stricter conditions above (including
(b),(c), and (f)), we may use this formulation for convenience. It should also be noted
that the formal asymptotic expansions obtained in Part I are consistent with these condi-

tions.

12



Functions which satisfy conditions (b),(c), (d), and (f), (but are not necessarily
harmonic or satisfy the boundary conditions) will be called "admissible', and the family

of admissible functions with a fixed value of 0 will be denoted by aa.

An important property of the family aa is: If the functions u,v belong to aa )

then for all A(0< A <1),

wW=A + (1AW

also belongs to aa. This may be expressed concisely as follows: The function space
*
ga is convex. The statement is obvious; to see it one only needs to verify that w satis-

fies all criteria of admissibility if u and v do.

The main difficulty in solving the above boundary value problem stems, of course,
from the non-linearity of the boundary condition (5. 1). The fact that Q is harmonic sug-

sk
gests a variational method based on the Dirichlet principle. 2

Generalized Dirichlet Integral. We first extend the notion of the Dirichlet integral

slightly to admit functions which have a logarithmic singularity at the origin, such that

*
The name convex is suggested by the analogy to finite dimensional spaces; e.g., a Lall
is convex because, if the points p, q belong to the ball, then the entire straight segment
connecting p and q belongs to the same ball.

#ook
The Dirichlet principle states that in a domain G with a sufficientlv smooth boundary,
there is a function Q which makes the Dirichlet integral

Ola] -4 ([(va)dedy
r

minimum under the constraint that Q assumes given continuous boundary values, Q is
harmonic in G.

13
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they satisfy condition (b).

We will use the following notations:

A
[/

2. D:‘ (ul, DZ [u, v] will denote the Dirichlet integral of u over the

1. G_ will denote the subdomain ¢ <r<i of G;

domain G)\ » and the associated bilinear form, i.e.
A . - . ] . - .
zj(— !.'\\)\] -J'A \/u Vy l,(‘i Jl,
e,
A s )
DA La] o DAL e, |
3. 0 subscripts and oo superscripts will be omitted in these forms, as

from Az defined below.

4. C)\ will denote the circle r==x.

The Dirichlet integral is for admissible functions in general divergent. In order
to separate its ''finite part'', we define
ta2 [w,v]= “ Ve Uy dgl +vwl-~3 u\dWIS vjdwl
t ¢ (I V. - . A v ({ ) q .

. 4 -
ik s alie G (5. 2)

< L(.

and

A: [((J = A:Lu/uj ‘

It is easy to see that if u(r, V), v(¥, ¥) satisfy conditions (b) and (c), then Az [u,v] has a

limit Alu,v] when €-0 and A-00, (and similarly ‘-‘z[u]-‘;\[u] = Alu,u )

If all integrations in the preceeding definitions are extended only to the upper
(lower! halfplane, we can define the functionals z\: ) (ul, A+[u ], etc. (AZ‘ [ul,an [u]
’ i) he -

etc. ) completely analogously. Thus

N L“-) = A uJ t 4.’_3_\.. “J etc.

14



We mention some important properties of the functional Alu]:
(1) Let the functions u(®, V), v(p,¥) be admissible, say, u eaa. v 608.

Then utve (l(1+B and

A[LL ~+-v‘J - A[_U‘.} t )-L'!(_U; \/J fA[V.J (5.3)

Eq. (5.3) is an immediate consequence of the identity

A(LLir\I'J:/A(‘l((:Jr,‘f’/k_\\t(l)\/JTA(:\VJ,
if we observe that Ae[u]’Ae[V]' Ae[u+v] all have limits as ¢e-0.

(2) Suppose h(yp, V) is a harmonic function in aa. and k(yp, V) is a function

in 00, (thus k has a finite Dirichlet integral in G). Then,
s . . i 3
4o ln,n]= Py R (r o) k() dg (5. 4)
L

The proof of Eq. (5. 4) can be found in Appendix 1.

Substituting (5. 4) into (5. 3), we obtain
DA

Afh+r]-sln]= 1P| Aw(y",c)k(%c’)f{*{* Dlk] .5

- OO

(3) The functional Alu) can be defined alternatively by ordinary Dirichlet

integrals. Let A be any positive number. Then

. . g 2
A\'_u]zDA[u]*DA[u'Jfﬁ—x wos - = fn) (5. 6)
Ct\

where u:'<= u-(a/r)4n r. The proof of this identity can be found in Appendix 2.

Formulation of Variational Problem. If u is admissible, then the boundary

integral

ok

" P denotes here the "Cauchy principal value' of the integral:

PS\ atpredy= Lom { (0 (7] wirdy

t » G €
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(]

is always convergent. From Alu] and B[u] we form tiae composite expression

F[LLJ-’A[((J rB[ctJ . (5. 8)
We mention here a property of F[u] which will be useful later: F{u)] is a

""convex'' functional; i.e., if ueﬂa. v eaa, and for some A, 0 < A<1, w=Au+(1-2)\)v,

ufv, then
Flw] < AFl «]e(i-))FLv]® (5.9)
The proof of this property can be found in Appendix 3.

We consider now the following variational problem (problem "VAR"): Find an

'admissible' function Q(o, W)eda, such that F[Q]< F[Qll for any Ql eﬂa different from

Kk
Q. Although the existence of a function Q will not be established in this paper, we will

show that the problem VAR is equivalent to the problem BV; thus if problem BV has a
solution, it is also a solution of problem VAR, and conversely. Such a solution is by its

skl sl
minimum property necessarily unique.

%
Equation (5. 9) is obviously satisfied by an (ordinary) function F(u) which is convex
from below. Moreover, convex functions can be defined by (5. 9).

%ok
The existence of a solution of the problem VAR is shown (see Pals) in a stronger

form. It is proven there that there is a unique function Q admissible in ta}}e above
sense, which renders F[Q] the smallest in a much wider function class - ( =
requires for membership p! l:u"‘] < oo, Dl[u] < oo and B{u) < o, instead
properties (b), (c),(d), and (f).

A different proof of the equivalence of BV and VAR, using (1. 6) as the defining equa-
tion of Alu] was given by Ackerberg.

o,

% 3K
I am thankful for this observation on the uniqueness to R. C. Ackerberg.
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We call attention in this variational problem to the absense of any kind of boundary
conditions along the real axis. The fulfillment of the boundary condition will be shown to
be a consequence of the minimum property of the solution. Similar situations are not
infrequent in variational problems. ('"'Free boundary values', ''natural boundary condi-
tions")6.

Proof of the equivalence of the problems BV and VAR

I. We first show that if the function Q(p, V) satisfies the conditions of VAR, then
it is also a solution of BV.

(a) The function Q must be harmonic in G. If it is not, then there is a
circular disk w entirely in G, in which Q is not harmonic. Then it is possible by
Poisson's integral to construct a function Ql such that Q=Ql on the boundary and out-
side w, and Ql harmonic in w. Then by Dirichlet's principle,

\ .
D“,[ Q 1] <D, [Q] :

(Dw denotes here the Dirichlet - integral in 1). If € is chosen so small that Ce is
completely outside .4,

A, [, ]<a, Q]
since Q =Ql outside 1. Hence

. - ‘ s

A[("l] < 4 [L\] s

a contradiction to the assumption that Q satisfies the conditions of problem VAR,

(b) The function Q must be symmetric to the ¢-axis. Suppose e.g. that

Alalzz (@],

Then we define the new admissible function
Q(‘f}”‘/.) 'F Y‘>(")

.‘(A)'_ - ‘
Q@ (¢.y) QR44) fysc

17



Clearly A [(\’1] < /—‘l 3 _]
which by assumption is only possible if QI=Q’

(c) We will use the definition of the first variation of functionals customary
in variational calculus. If 8Q(p,¥) is an arbitrary* variation of Q, and $[Q] is a

functional, then

¢LG] - i ﬂuu\m\]f ) (5. 10)

A= U

is the "first variation'" of $[QJ]. Thus we show that

SFLQI= Pj [0 (¢.C)+ v;(«f),m/\ (L{,L)Jé“(\(q)c)d(f,
where N(®) =1, if © >0and n(®) =0 if ¢ <0, (5-11)

Equation (5. 11) immediately implies that if Q is a solution of the problem VAR,
then .
Q ( C ,'F \f - L,\ )
Y )f e
Y 'ltr\/lc\(\{IC) lf (.F >C /
i.e., Q satisfies all conditions of BV, '

Equation (5. 11) is an easy consequence of (5.5). Substituting h=Q, k=A6Q in

(5.5) and taking into account the symmetry of Q,5Q,

<

ALG+AS6T-21G]= A G (nOFQee) N DI ER]

This implies by definition (1. 10) that

im0

SA[Q]:X G,’,(\f’c)é\(i(y,C)clcf, (5.12)

0
On the other hand, from the definition of BLQ] (Eq.(5.7) ),

(‘)R[C\sz 5(»\1’4@(\}3(-)5&(%,()dkf'

:':However, in the present context, only such variations &Q are admissible for which
Q+x6Q eaa for all sufficiently small values of |X| For this it is sufficient if

5Q eao. Furthermore if is sufficient to consider only variations symmetric to the ®-axis.

18



is obvious. Combining with (5. 12), we obtain (5. 11).

II. Suppose now that Q(y,¥) is a solution of problem BV. Then by (5.11),
6F[Q]=0, i.e., F[Q] is stationary. To show that F[{Q] has an absolute minimum in

Q, we will use the '"convexity' of the function space aa and of the functional F.

Let Ql # Q be any other admissible function. Consider the functions

SHy V)= R AR, - (tsas )
By the convexity of da, S also belongs to aa. Denote F[S]= $(\). 6F[QJ=0 implies

$’(0) = 0. However, by the convexity of Flu], the function $(\) is convex from below

FLG)

in (0, 1); thus,

Wi

Pl s f () f (o)

i.e., F{u] has an absolute minimum when u=Q.

19



6. CONFORMAL MAPPING INTO A CIRCLE

In the numerical solution of the variational problem VAR it is desirable that the
domains of integration be finite. Therefore, the half-plane Y < 0 is conformally mapped
into the half-circle disk E}{s: |s| <1, Ims > 0} of the complex s-plane. The mapping

function is 4
L= w)

| S=S(W)?( )ih_‘

+ |
: J (6.1a)

- w

and its inverse

N:W(S):"( ;”,')i - (6. 1b)

Here (-w)é is defined by providing the w-plane with a slot along the positive imaginary

axis; thus, 0< arg(-w)é < % .

If Then
w S(w)
=0 = -1

on the - - axis | on the (-1, +1) diameter
= oo = 4]
iT
on the typ-axis onthe s=e’ , 0 €« 1< mhalf circle

+1 i

(see Fig. 4)

Let s= peiT. The mapping of the positive p-axis into the half-circle c=1, 0 < 7T <m is

described by
A
(P :[cot‘(t/.’.)] . (6.2)

20



Evaluation of Flu] in the s-plane. To take the logarithmic singularity of the

function '(w)=Q - i? at the origin of the w-plane into account, we introduce the functions

)’. .:"X ’ S '
RisY = <% g 222 (6. 3)

U R aa
+(e,T)- Ke Risz)= 2 twn 4-

/"t

‘ (6.3")
Write I(s)= ' (W(s)) and

(s) = l:’(s)' R(s) , (6. 4)
fe)- Glem)-Hler).

In general, for any admissible u{p,T), the function uo(p, ) = u-r(p, 1) is bounded in

p € 1. Further conditions on u_are specified below.

The functional Alul] can be transformed into the s-plane using (5.5). Replacing

there h by r(;,T), k by u_ and observing that r (1,7) = a/n, we obtain
s &

[LLJ-':D[LLOJ? 7378 uc(l,"c)dt' *ALTJ : (6.5)

¢
Since the Dirichlet integral is invariant with respect to conformal mapping, the term

D[Uo] may be evaluated in the s-plane. Alr), a constant, is irrelevant with respect to
the variational problem, Therefore we will use the form

-
L]

~ /2
Alud=Dluc] t{ w.(i,2t)dt, (6.5
F [u]:E[UJ* E[u},

(6.6)
where T3 | tﬁf’ (lu—
Blad=2 | [ceshatn2t)- L]0y
i o dt-
= s' { (’-k’p[i“ lt)]ccsr-—ur)[-i uo(l lt)}}’ ‘ (6.7)
¢
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When u

is harmonic, (6.5') can be expressed in the form of boundary integrals by
transforming D[uo] with Green's formula:

~ /2
A[u]=j w(1,2¢)[ w, (15260 + 1 ]dt (6.8)
o
Boundary conditions at s=+l and s=-1. Q(¢, V) is expected to possess properties
(b), (c) and (f) of "admissible'' functions.

In the s-plane this can be expressed as follows.
-1
=o(ls+1]| )

! -
(b") Qo(l, n) =0, and VQO
as s — -1. (Here as above, Qo(p' 7) = Q(p, 7)-r(p, 7).)

(c”) Q_(1,0) =0, and vQ_ =o(|s-1|'l) as s ~ +1.
(f") Q(1, 1) = ofr®)

(6.9)
as 17~ 0. This implies

_a 2 3
Qo(l.f)- ki +0(77)
as 1T~ 0.

(6.10)
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7. APPLICATION OF THE RITZ-GALERKIN METHOD

The variational problem VAR was solved in the special case a=n/2 (normal
injection) numerically, with the Ritz-Galerkin method. This method is often used with
advantage when the value of the variational integral is the most important result, e. g.,
in problems involving eigenvalues (elastic buckling, resonant frequencies in vibration
problems). It is known from experience that usually the value of the variational integral
can be determined much more precisely than the minimizing function. In the present
case only the minimizing function is of nhysical significance. Nevertheless, the Ritz-
Galerkin method (referred to by R - G) was found quite suitable and probably better than
a relaxation type method. Our choice fell on the former for the following reasons:

(1) Inthe R-G method the unknown function is approximated v:ith a
linear combination of known functions (we will say that these functions form a '"base'’).
The base can be chosen in such a manner that they contain much of the information known
about the solution before the computation is started. In the present problem it is known
that the solution is harmonic, symmetric to the real axis, and smooth ¢n the boundary.
The base can be chosen to satisfy these conditions identically. Boundary conditions at
s=-1 and s =+1 can be taken into account by proper combination of the elements of the
base. Thus a significant portion of the computing work can be saved if known properties

of the solution are taken into account by a judicious choice of the base.

In the present problem the R - G method requires the determination of a one-
dimensional array of coefficients, (pn in Eq. (7. 2)) as opposed to the two-dimensional
array of grid points in the relaxation methods. (Actual computation, discussed below,
showed that only 15 coefficients yielded as satisfactory results as probably thousands of

values in grid points would have done.)
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(2) The circular shape of the domain makes the use of rectangular grids
clumsy. On the other hand, if the w-plane is chosen, the infiniteness of the domain is a

source of trouble.

According to the R-G method, we use a formal expansion

I_'O(S)= r‘(s)—ﬁn -:’—5‘“"2 ann(S), (7. 1)

GO(‘S) :é(f)T)"

N 2¢cest /
4

= 5 Pa l’ln(etlt) > (7. 2)

n- O

[

| TN .

where Hn(s) are analytic functions to be specified, hn(p. T) = Re Hn(s), and the p, are
unknown coefficients. To take full advantage of the economy of the R -G method, the
functions hn(p, T) will be chosen such that they satisfy the following conditions:

1) hn(p. T) is harmonic in p <1, continuous on p =1.

2) hn(p, T) is symmetric to the real s-axis.

3) hn(l. T) must form a complete system in (0, 1), i.e., every square

integrable function u(T) can be expanded in a series
a(T) = Z_ g, h, U,T) |

hn(l. T} need not be differentiable in 7=0,n, since QO (1, T) is not differentiable there.

The functions hn(o, T) will be determined such that on the half-circle p=1,

0<T< 1m

i .
This expansion need be valid only with the exception of a set of measure zero.
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e e = e,

,l-[ ( // ¢ ). (ey HC (H' L7/',L, ) » (7.3')

\

hoo (1 T)= sovat (n=12,.00) (7.3%)

Qo(l, T} can then be expanded in an infinity of ways into the series

(MORELl= Z (pr ) cesint t p,’,’ 4nnt) (7.4)

)
which is validin 0< T <m. "
Conditions 1) and 2), combined with (7. 3’) and (7. 3”), are sufficient to determine
hn(ﬂ, T) uniquely.
ho (8,0)- ¢ wsnt (0= 0,2,..) (7. 6)
is obtained quite straightforwardly. The functions th- ] are somewhat more cumber-

some to compute. Taking into account property 2),

) Sem 'l ( C < J %
(i1,7) -
}\»2”-, "Jv;l i [ f ~§2/' [
By Fourier series expansion of h2n—l(l’ 1), and matching with harmonic functions
term-by-term,
k
4” WEIE B ce k'l\
Azn (¢,7)= Z_t ,,z_,ge S (7.7)
(n=1,2,...), where ¢ =l, €.=¢e,=...=1;, A =0 for even values of vand A =1 for odd
o 2 1 2 v Y

values of wv.

rActually, a function &(T) with continuous ¢ '(7) in (0, 7), can be expanded into series of

the forms
é (( ) = ?_0)“ a, cesn’l (7 51)
and -

F(T) - 2] b, snaT, (7.5")

The redundancy (and consequent greater flexibility) in the expansion (7. 4) allows a cloaer
approximation of Q*(1,7) then would be possible with series of either the type (7.5 ') or
of (7.5"). The latter series converge in the neighborhood of the endpoints 0, ™ rather
slowly in general, because either all the base functions or all their first derivatives van-
ish at the end points. Therefore the approximation of a function with non-zero values

and first derivatives of 0 and ris not practical with the series (7. 5') or (7.5").
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The corresponding complex forms are
n
Hzn(s) S (h:o)l)z)ll-) (7.8)

i_f_o A"Ksk (n=1,2
=, 1 K+

"

)
/ (7.9)

Hin-l (‘5) B

The expansions (7. 7), (7.9) converge too slowly if ¢ is close to unity. Therefore, it

was necessary to use the following alternative expression:
n-J

. n
, ; " /- 15 o
Hln_,(5)= é{z'(S"—S ) "‘Z {_5 (6" s k’)} (7.10)

Equation (7. 10) was obtained from (7. 9) by a tedious rearrangement of the series. The

equivalence of (7. 9) and (7. 10) is simpler to show by substituting the power-series expan-

+
sion of 4n i_: into (7. 10). The two series are complementary i.e., (7.10) is suitable

for computation when |s| is not too small, and (7.9) should be used for small |s|.

Variational integrals. Approximating Qo with a finite number of terms of the

series (7. 2), both lg[Q] and 5[6] become functions of the coefficients P, We write

ATQIZ Elpe,. Py,
BLEI]E' (-”(po,..,)pN_,) (7.11)

%\_d]:\' ¢(pcz“')PN'l)E 5(,7)1'/5(”)‘

The functions ©,8 can be obtained from (6. 3") and (6. 5) respectively, by the
N -

substitution of - /
QQ(Q/T)Z Z ,J” An(elt) ’ (7.12)
n=0

Thus, 8(p) is a mixed quadratic form,

s(p)= Z Z Xmin Pmp, *’Z b, p, (7.13)

m-0 n-¢0 i

and
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The coefficients a , b are defined by the formulas
mn  n

e

a VA )k, ) de (7. 14)

T Jo

.
b, -+\ A, 0,0)dT, (7.15)
¢
and Kn(T) = [Sa—o hn(p,T)Jozl. From Eqs. (7. 8) and (7. 10)
K (rt)=nces nT, (7.16")
2n .
T ) B i . , T + .s_\_:n'n_'(‘ *
Kin-l( ' P o {h(“ IT“ll S$in I
- K }
‘ — kT "
*lZ Ay g Ce , (7.16")
h

The matrix elements a o bn can be expressed from (7. 14) and (7. 15) in closed form.
Since this involves a considerable amount of transformation of series, and is quite labo-
rious, the details are omitted. The closed formulas obtained for the matrix elements are
very useful in the numerical work, and are listed in Appendix 4. These formulas are
consicvtent with the symmetry of the matrix a o and were checked by numerical integra-

tion.

No similar reduction of 3(p) is possible because of the non-linearity of the boundary

conditions. Thus, from (6. 5)

L .,
/.’E(p)g f / E(t,p)"['cm't.rf(f,p)- .IJ‘ st dt @
where l

N
. Y= b )) .
E(L,p)= ep (2 pah,Ci,2e)) . (7.18)
The problem of finding the function 6(:. 7), for which F[E)] assumes its minimum is

thus reduced (in approximation) to that of finding the minimum of the function of N vari-

ables ¢(p) = &(p) +B(p).
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The function ¢(p) will be minimized by constructing a sequence of '"admissible"

coefficient families 1p(:h r=1,2,3,...) such that

é(Pm)-" "'f@(P) as T — 00 .
(r)

In the numerical work for the determination of the function Q, the coefficients p: were
subjected to the constraints given below. A combination of coefficients will be considered
admissible only if the function
1) , _ Sy -
G(o(e/t) - %: Pn h'\(e’t)
satisfies the boundary conditions at s =x1; 1i.e. the conditions (b’),(c’), and (f’) in 5 2.

Condition (f’) (Eq. (6.10)) implies

2 p,‘"" =C (7.19)

i Fax >
: (+) X
% KPu.,"0, (7. 20)

- ()
%k",o;‘}—% ‘ = (7.21)

These equations already imply the milder conditions (¢’), considering the forms (7. 7),

(7.9) of Hn(s).

Condition (b’): From the form (3.9) of H it follows that

Zn-l(s)
th,, (s)=C, t2C1"n(s+1)bu(s+1)+Qsr1)
as s—=-1; hence,

F(s) - C'%Z(")“""P.zn-/ (5,,)Eu(srl)+0(i5+11) ,

*Note that constraint (7. 20) guarantees that no term of the form A(s-1)4n(s-1) will
appear in the expansion for s-+1.

**1 am indebted to R.C. Ackerberg for the formulation (7. 21).
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Thus the condition (b’) is already satisfied. Nevertheless the asymptotic equation (4.2)
of Part I implies that (d/ds) Fo(s) is bounded in the neighborhood of the point s = -1,

Hence in the numerical computation we may (and did) impose the addi‘ional constraint

S (-l)kkp;_k_l =0. (7.22)
k
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8. NUMERICAL METHOD
We will denote ¥ A
4 t
? - . - : L
B,(p)= o= bt [ {iste £(e,0)-E(p) " Fh L2 530 )
and Q(
‘aL
e 2
Amn P) d map”

T/2 | , R dt
= Quat fo {a-s‘t E(t,p)vL(t,p) '}hm(/;li)h.(‘»li)m (8.2)

These integrals converge if (7.19), (7.22) are satisfied.

With the constraints (7. 19) - (7. 22) added, the variational problem implies by the

use of the Lagrange multipliers \l' XZ' )\3. >\4:
Bn(P)fm,\,)Lr'nnzAlfmn3A3+.mn4)\4:O’ (8. 3)

The coefficients m are listed in Table 1.

. Mhnl Mn2 Mn3 M4
=2k 1 0 k'2 0
=2k-1 0 k 0 (- 1%k
Table 1
In vector notation (8. 3) can be written
ﬁ(f))f MAX=C (8. 4)
where ITI is a (known) N x 4 matrix, *» a 4-element column matrix.

The solution of (8. 2) was obtained by Newton's method. In principle, this required

choosing a starting vector p(o)which satisfies the constraints (7. 19) through (7. 22), and
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(r) (1) . . .
to compute the sequences p ,A , (r=1,2,3,...) defined recursively by the following
relations:

,i\(’s(fol)_ ,a(r,))f ]:'1 /‘\(hl): _ g( 'r')('\) , (8. 5)
M-x( P(‘ff‘)" ,-)(f)) = () ) (8.6)

where M " is the transpose of M. Equation (8. 6) ensures that the constraints (8. 3)

continue to be satisfied. Equations (8. 5) and (8. 6) represent a linear system of N +4

(r+l_)

b é;) (n=0,...,N-1) and x;’“? (j=1,2,3,4). It

equations, with the unknowns p
can be shown that the determinant of the system cannot vanish so that (8. 5) - (8. 6) always

has a unique solution.

The iteration for the computation of the coefficients p, was programmed for the
IBM 7040 computer using this method. The computation was started with N =4, the
lowest number for which the constraints can be satisfied. For N =4, the coefficients P,
are fully determined by the constraints. Then a number of iterations were carried out
for N =5, with the starting value P4 0; when the function <I>(po, Ce p4) reached its
minimum for N =5 with sufficient approximation, the iteration was continued with N =6,
with a starting value p5=0, and so on. Thus, a double iteration was used, consisting of
a sequence of iteration steps ("'major steps''), and each major step was itself an iteration

for a fixed value of No.

Practical details of the computation.

(1) In each step of the iteration N(N+1)/2 elements of the matrix A and
N elements of b have to be evaluated by numerical integration. In each integration the
integrand has to be evaluated in M places, where M is the number of subdivisions of

upy

the integration interval (O, 5 As a result, the numerical integration accounts for most

of the computer time needed to perform the Newton iteration. We used in the integrations
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Gauss mechanical quadrature, 96-point formula. 7 The integration subroutine yielded
5 or more significant digits accuracy, when the integrands were bounded, reasonably
smooth functions. To test the integration routine, a n' bn were evaluated with numerical
integration, and the results were compared with the closed formulas derived. (Appendix 3)

(2) The error of each step of Newton's iteration was measured by
(’s'anlB-,(r’)]/mtli‘lskl
k g k

where Sk is the biggest partial sum (in absolute value) in the computation of B The

K’
iteration in a major step was considered finished when ¢ did not exceed 2x 10'6. It
was somewhat surprising that with the exception of the first three major steps, this iimit
was reached in a single iteration. At the end of each major step, we computed the new
approximation to Qo and the error 6(t) committed in the boundary condition (5. 1), in

the 96 subdivision points of integration, i.e.,

§(t)=simh Qg.0)+rQy($,0)= gouh G(1 lt)* Q (1, 2“2 o3

t
st
2ccst {cm t E(t,p)- E(t,p) f—Ll 22 /OAK(/,zf)]gm t}

The square norm of §(t).

-

HEHEGE-: Tk

0

was used to judge the goodness of the answer in each major step. As an additional check
the total angle of deflection of the jet was computed after each major step using the for-

mula

0, = {w unh Q¢,0)dg

max
0

g’”‘{wt “(t,p)- E(t,p)" }—q’% ;
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(The theoretical limit value of emax after infinitely many iterations is of course 900).
The values of $(p), ||6 || , gmax obtained in the course of the iteration are listed in
Table 2. As is evident from this table, H6 H decreased steadily during the first 11
major steps, and reached a minimum of 4. 38 x 10'4, well within the tolerance of engi-
neering computations. After this the goodness of the approximation, as judged from the
values of H6 H , deteriorated first slowly, then faster, and in general changed in an
erratic fashion. The reason for this peculiar trend is probably that the integration routine
loses accuracy for high harmonics sinnT, cosnT, while the theoretical gain in accuracy
of these terms is becoming smaller. Also, the SHARE routine used for the solution of
systems of iinear equations loses accuracy for a large number of equations. Another
measure of the progress of the computation is the decrease of &(p). As seen from Table
2, ¥p) converges extremely rapidly to its minimum, in fact much more rapidly than 6.
(The best value of #(p) was 0.474498, whereas the first (!) major step .resulted in

$(p) -~ 0. 480...) The coefficients Aij(p) also converge rapidly; they hardly change from
one step to the next, once computed. However, the coefficients P; do not show any trend
of convergence, a fact explained by the infinitely many possibilities to represent a single
function Qo(l. r) by a series j‘pnhn(l, T). The "best' choice of the coefficients P,

(n=0,1,...,14) is listed in Table 3.

The iteration described above took 5% minutes on the IBM 7040 computer.
(3) In the final phase of the computation the coefficients p, were used to

obtain the functions X(p, V) and Y(y,¥). This was based on the formula
W

Z - j {e-'}(*(w‘)- C -5—2‘:‘17)“;‘— F C [w~2(—w)'”_J (8. 7)

where
- (=)
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Equation (8. 7) is a direct consequence of Part I, Eq. (4¢.5. This form of the equation
has the advantage that the integrand remains bounded at the origin. The integration was
carried out by a subroutine to solve systems of ordinary differential equations, based on

the Adams-Bashford method (4th order), written by Kenneth Plotkin.

N v $(p) “5 H Gmax/degr. Tl/sec,
5 5 0. 48025144 3.807 x 107} 66. 58 .68
6 2 0. 47479781 1.671 x 10° ! 93. 664 .90
7 2 0. 47450213 2.347 x 1072 87.932 1.17
8 1 0. 47449958 3.823 x 10”3 88. 223 1. 48
9 1 0. 47449929 7.608 x 1073 88. 6648 1. 83
10 1 J. 47449854 1.631 x 1073 89. 5812 2.23
11 1 . 0. 47449850 4.156 x 107> 89. 6775 2.68
12 1 0. 47449845 1.017 x 1073 89. 7799 3. 18
13 1 0. 47449843 4.63 x1074 89. 992 3.73
14 1 0. 47449842 4.62 x10°* 89.968 4.32
15 1 0. 47449841 4.38 x1074 89.974 4.97
16 1 0. 47449841 1. 676 x 1073 90. 027 5. 65
17 1 . 0. 47449841 1.587 x 1073 89. 979 6. 37
18 1 0. 47449839 £ 88 x10°% 89. 921 7.17
19 1 0. 47449838 1. 640 x 107> 89. 889 8. 00
20 1 0. 47449838 2.257 x 1073 89. 899 8. 88
Table 2.

N number of unknown coefficients P,

v number of iterations/major step

¢(p)  value of variational integral

||6|] norm of error in boundary condition

emax total angle of deflection of jet

T time required for individual iteration
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. 433968985 x 107° -. 106932819 x 10°°
. 261440941 x 107! -. 158038496 x 10” !
. 225389441 x 107! -. 210494106 x 107°
. 410373311 x 1072 102374660 x 10° !
461629598 x 107° 168663154 x 10°°
. 676816046 x 107> - 155702682 x 107°
251967831 x 107> - 149858572 x 107>
Table 3.
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9. DISCUSSION OF RESULTS AND CONCLUSIONS

Plots of the bounding streamline which were determined numerically using a
variational technique are displayed in Figs. 3 and 5, along with Taylor's theoretical
results ! and some experimental data from V.zel and Mostinskii3. Some of the stream-
lines and equipotential lines are shown in Fig. 6 in the neighborhood of the jet opening.
The numerical results indicate a deeper jet penetration than had been found by either
Taylor or experiment. Taylor mentions the difficulty of verifying theoretical results
experimentally due to the viscous spreading of the jet which would fill a wedge of nearly
40 degrees. With this in mind, the discrepancy between the theoretical curve and the
experimental data in Fig. 5 is probably not so great.

Finally, using Bernoulli's principle in the external flow, the coefficient of the
pressure can be written

E B“ Eoo - l’ QZG(Y’¢)

2
r 219‘ %m; (9.1)

Numerical values for C_ were computed versus distance along the plate upstream and
are displayed in Fig. 7. It is readily seen that the pressure decreases slowly from
the stagnation pressure at the jet exit to the free stream value many slot widths

upstream.
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APPENDIX 1

Proof of Equation (5. 4):

* O

bALh k)= Pl A (0)h(d, ) dy .

- o

A . .
To show (5. 4) we transform Ae (h, k] by Green's formula, taking into account

that h(yp, y) is harmonic. Thus,

D:[h,k]f ﬁﬂé Vhvkdgdy = 4‘{‘%: ;i't:kds,
and .
AY [h k] - DAk, K]+ »:(- S 5 hood fcpk A3 |
-%{ (:16 }hY(q)u)k(%c)dq' (Al. 1)
disl =7 k o
+ 2 _S(.‘ k S J X 3
where

h

8

S N
X: (\/'11«('1)"/ ) me (M( ¢

ofs -

Let now €-0. Then, using property (b), a simple computation shows that X -0,

and since k is bounded,

_L$ kos — ¢
(G S

»

Letting A- oo, from property (c) follows that J h_ kds = 0.

c
A
(Al.1), the statement (5. 4) follows.
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APPENDIX 2

Proof of the identity (5. 6):

l 3
Alal=D 1] rDet ] 25, wels - 2w )

A

sk
Ac (u] canbe written by the substitution u=u + %’ {n r, using polar coordinates

(r, 8), in the form

o 2 w*
4A(A-[“J:SS(_(- [(;1—’%) +- ’('j J“!‘L»Lf‘de
T
+ _____.;l..__ . { S‘Lu*((-,e) t %lm?]de}lz
LT (/H(:' i

K
Sg ¥ ur) ‘ML:deJr%S @ (), 6)d0
Ge

-

D

2

pX
+___*_l -{g L("((;)O)()(G}*Q?/“A'

JU
AT KV\G

Let now €-0. Taking into account that u is bounded in the neighborhood of the origin,

we obtain
o

4] 40‘[.(;'] roe L u*(2,6)de + ‘%"qu) :

The proposition follows now from the identity

Alul- /\A[u_] + DA[“_]
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APPENDIX 3

Proof of the convexity of the functional F([u].

We first show that the (ordinary) Dirichlet-integral is a convex functional. Let
S denote an arbitrary domain, Ds[u] the Dirichlet-integral of the function u in S and
dlu] = (Ds[u])é, the "Dirichlet-norm'" of u. If dlu] <, dlv]< o, then u,v satisfy
the following the triangle inequality8
dlurv]<dfu] vd[v] . (3.1)
Let k by any number, 0 <k < 1. Then, since dlu] is homogeneous first crder

in u,

@(k);d[ku r(l-k)vJSkd[u]r((-k)d[\J, (A3.2)

i.e., d[u] is convex (but not strictly, since equality is possible in (A3.2)). Moreover,
since u,v are arbitrorry, $(k) is a convex, non-negative function. Actually, $(k) can
vanish at most for a single value of k, for which ku +(l1-k)v = 0 almost everywhere
(possible only if u and v are linearly dependent). This implies that [Q(k)]z is strictly

cenvex; consequently, if u # v,

[@(R)Jl< k[sf(O)Jlf("“’[@(”Jl d (A3. 3)

i.e., , . =
[ wl+(1-k V] o
Ds[kuf('“k)v-}(\ Ds[ J ) D L ]
Apply now (A3.3) to S =G>\. and the admissible functions u,v, u # v. and also to
3K e
S=G", u',v". Then from (5. 6) follows the convexity of Alu].

it
The convexity of = . b
B[u) = S [ cesh uly,0)- t]e ¢
V)
is an immediate consequence of the convexity of the function cosh u. Therefore

Flu]= Alu] + B[u] is also convex.
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APPENDIX 4

Evaluation of the Matrices (amn), (bn).

aZm,2n=\) f m#+n
- T ;
a-?'l,ln L
Zmn
2 s )
aim,ih-‘ m-n it m*
()\k= 0 if k is even, = 1, if k is odd)
g mn Y -
= - ) == » m
azm~l,2n-. JTm"-n"(u_"‘ “") of #n)

- 4n
alﬂ“")z,’—[‘ =5 _LQ-,L'

™
Here
[

|
Ldlk—- l' i +. ,f‘zr-.-‘ b ]

4 | e
Waei=[t 4+, " T2 2k

L SO, | S
'-Q—z«—‘l'é‘ T

l

/

e . g PECERINE s, s L— ,
-;2-)_«4. 1 ¥ 3eT (1,,_-,)" t Z(J.kvl)J'

The matrix a is symmetric, i.e., LT For both even and for odd subscripts

only non-negative values may be substituted.

The matrix b:

b°=—§ » by, =0 t'f k>C,

RS . -C,
b4k“'.zkn ? Brres €
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FIG. 5.

THE BOUNDING STREAMLINE NEAR THE JET EXIT
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